pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH.
نویسندگان
چکیده
The reliable and sensitive detection of cancer-specific biomarkers is important for the diagnosis and treatment of cancer. Hence, detection of these biomarkers has to be reliably and rapidly performed in diverse settings. A limitation of the conventional biomarker-screening method of enzyme-linked immunosorbent assay (ELISA) is the employment of labile components, such as hydrogen peroxide and horseradish peroxidase. Previously, we reported that nanoceria is able to oxidize various colorimertic dyes at acidic pH, such as 3,3',5,5'-tetramethylbenzydine (TMB) and 2,2-azinobis-(3-ethylbenzothizoline-6-sulfonic acid) (AzBTS), and an assay was designed for screening the folate receptor. Herein, we show that the ability of nanoceria to oxidize a substrate can be tuned by modulating the pH. Results showed that nanoceria can oxidize the nonfluorescent substrate ampliflu, either to the very stable fluorescent product resorufin at pH 7.0 or to the nonfluorescent resazurin at pH 4.0. On the basis of these findings, we conjugated Protein G to immobilize antibodies on the surface of nanoceria, in order to detect the expression of prototypic cancer biomarkers at pH 7.0, such as the folate receptor and EpCAM. We found that within 3 h, nanoceria identified the expression of the folate receptor and EpCAM on lung carcinoma and breast adenocarcinoma cells, respectively. Traditional ELISA had a readout time of 15 h and a higher detection threshold, while requiring multiple washing steps. Considering these results and nanoceria's ability to oxidize ampliflu to its stable fluorescent product at neutral pH, the use of antibody-carrying nanoceria in the lab and point-of-care molecular diagnostics is anticipated.
منابع مشابه
Oxidase-like activity of polymer-coated cerium oxide nanoparticles.
Inorganic enzyme? Ceria nanoparticles exhibit unique oxidase-like activity at acidic pH values. These redox catalysts can be used in immunoassays (ELISA) when modified with targeting ligands (see picture; light blue and yellow structures are nanoparticles with attached ligands). This modification allows both for binding and for detection by the catalytic oxidation of sensitive colorimetric dyes...
متن کاملImprovement of Photocatalytic Properties of Titanium Oxide Nanoparticles (TiO2) Doped with Cerium Atoms and Evaluation of Methylene Blue Dye and Wastewater antifreeze Treatment
In this study, the photocatalytic and bleaching properties of pure and doped titanium dioxide nanoparticles with 1%, 3%, 5% and 10% Ce dopant were studied using Ce(NO3)3 precursor. The results showed that the highest methylene blue degradation of the sample with 5% cerium impurity was 97% in neutral medium (pH=7) after 75 minutes. The bleaching response to wastewater treatment with 5% cerium im...
متن کاملSelective Determination of Dopamine in the Presence of Ascorbic Acid and Uric Acid at Neutral pH Using a Silver Nanoparticles-modified Carbon Paste Electrode
Developing simple, sensitive and selective sensing systems for dopamine is important due to its biological significance. In this work, a silver nanoparticles-modified carbon paste electrode (AgNPs-CPE) has been constructed and used to detect of dopamine (DA) in the simultaneous presence of ascorbic acid (AA) and uric acid (UA) at neutral pH 7.0 by cyclic voltammetry. The modified electrode show...
متن کاملEffect of Cerium Oxide Nanoparticles on Oxidative Stress Biomarkers in Rats’ Kidney, Lung, and Serum
Background: The present study aimed to evaluate the effects of different concentrations of cerium oxide nanoparticles (CONPs) on the oxidative stress (OS) status in kidney, lung, and serum of rats. Methods: Male Wistar Rats were treated intraperitoneally with 15, 30, and 60 mg/kg/day of CONPs. The biochemical parameters, including total antioxidant capacity (TAC), total thiol group (TTG), malon...
متن کاملA cerium oxide nanoparticle-based device for the detection of chronic inflammation via optical and magnetic resonance imaging.
Monitoring of microenvironmental parameters is critical in healthcare and disease management. Harnessing the antioxidant activity of nanoceria and the imaging capabilities of iron oxide nanoparticles in a device setup, we were able to image changes in the device's aqueous milieu. The device was able to convey and process changes in the microenvironment's pH and reactive oxygen species' concentr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 83 7 شماره
صفحات -
تاریخ انتشار 2011